On Hecke L-functions attached to half-integral weight modular forms
نویسندگان
چکیده
We would like to recall that in the case of Hecke eigenforms on Γ1 non-vanishing results for their Hecke L-functions at an arbitrary point s0 in the critical strip (not on the critical line) have been proved in [4] (cf. also [7]), using holomorphic kernel functions. This method was carried over to the case of half-integral weight in [8], for arbitrary level. However, in this approach for given s0 the weight in general has to be large depending on s0.
منابع مشابه
p-adic interpolation of half-integral weight modular forms
The p-adic interpolation of modular forms on congruence subgroups of SL2(Z) has been succesfully used in the past to interpolate values of L-series. In [12], Serre interpolated the values at negative integers of the ζ-series of a totally real number field (in fact of L-series of powers of the Teichmuller character) by interpolating Eisenstein series, which are holomorphic modular forms, and loo...
متن کاملThe Eichler Commutation Relation for theta series with spherical harmonics
It is well known that classical theta series which are attached to positive definite rational quadratic forms yield elliptic modular forms, and linear combinations of theta series attached to lattices in a fixed genus can yield both cusp forms and Eisenstein series whose weight is one-half the rank of the quadratic form. In contrast, generalized theta series—those augmented with a spherical har...
متن کاملChanges of Fourier Coefficients 6 of Half - Integral Weight Cusp Forms
Let k be a positive integer. Suppose that f is a modular form of weight k + 1/2 on Γ0(4). The Shimura correspondence defined in [12] maps f to a modular form F of integral weight 2k. In addition, if f is an eigenform of the Hecke operator Tk+1/2(p), then F is also an eigenform of the Hecke operators T2k(p) with the same eigenvalue. For more on half-integral weight modular forms, see [12]. Let t...
متن کاملP-adic Family of Half-integral Weight Modular Forms and Overconvergent Shintani Lifting
Abstract. The goal of this paper is to construct the p-adic analytic family of overconvergent half-integral weight modular forms using Hecke-equivariant overconvergent Shintani lifting. The classical Shintani map(see [Shn]) is the Hecke-equivariant map from the space of cusp forms of integral weight to the space of cusp forms of half-integral weight. Glenn Stevens proved in [St1] that there is ...
متن کاملHecke Structure of Spaces of Half-integral Weight Cusp Forms
We investigate the connection between integral weight and half-integral weight modular forms. Building on results of Ueda 14], we obtain structure theorems for spaces of half-integral weight cusp forms S k=2 (4N;) where k and N are odd nonnegative integers with k 3, and is an even quadratic Dirichlet character modulo 4N. We give complete results in the case where N is a power of a single prime,...
متن کامل